skip to main content


Search for: All records

Creators/Authors contains: "Mackey, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In compact and dense star-forming clouds a global star cluster wind could be suppressed. In this case stellar feedback is unable to expel the leftover gas from the cluster. Young massive stars remain embedded in a dense residual gas and stir it by moving in the gravitational well of the system. Here we present a self-consistent model for the molecular gas distribution in such young, enshrouded stellar clusters. It is assumed that the cloud collapse terminates and the star formation ceases when a balance between the turbulent pressure and gravity and between the turbulent energy dissipation and regeneration rates is established. These conditions result in an equation that determines the residual gas density distribution that, in turn, allows one to determine the other characteristics of the leftover gas and the star formation efficiency. It is shown that our model predictions are in good agreement with several observationally determined properties of cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253 and its embedded cluster.

     
    more » « less
  2. ABSTRACT

    G0.253+0.016, commonly referred to as ‘the Brick’ and located within the Central Molecular Zone, is one of the densest (≈103–4 cm−3) molecular clouds in the Galaxy to lack signatures of widespread star formation. We set out to constrain the origins of an arc-shaped molecular line emission feature located within the cloud. We determine that the arc, centred on $\lbrace l_{0},b_{0}\rbrace =\lbrace 0{_{.}^{\circ}} 248,\, 0{_{.}^{\circ}} 018\rbrace$, has a radius of 1.3 pc and kinematics indicative of the presence of a shell expanding at $5.2^{+2.7}_{-1.9}$ $\mathrm{\, km\, s}^{-1}$. Extended radio continuum emission fills the arc cavity and recombination line emission peaks at a similar velocity to the arc, implying that the molecular gas and ionized gas are physically related. The inferred Lyman continuum photon rate is NLyC = 1046.0–1047.9 photons s−1, consistent with a star of spectral type B1-O8.5, corresponding to a mass of ≈12–20 M⊙. We explore two scenarios for the origin of the arc: (i) a partial shell swept up by the wind of an interloper high-mass star and (ii) a partial shell swept up by stellar feedback resulting from in situ star formation. We favour the latter scenario, finding reasonable (factor of a few) agreement between its morphology, dynamics, and energetics and those predicted for an expanding bubble driven by the wind from a high-mass star. The immediate implication is that G0.253+0.016 may not be as quiescent as is commonly accepted. We speculate that the cloud may have produced a ≲103 M⊙ star cluster ≳0.4 Myr ago, and demonstrate that the high-extinction and stellar crowding observed towards G0.253+0.016 may help to obscure such a star cluster from detection.

     
    more » « less
  3. null (Ed.)